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Suppose that ris a Jordan arc in the complex plane and thatfis continuous
on r with modulus of continuity w(j, t). r is said to have property J if for
any such function there is a sequence of polynomials {Pn}, Pn of degree < n,
such that

En(f) = sup Ifez) - Pn(z)I = O(w(j, lin»
ZEr

as n -+ 00.

That is, r has property J if the Jackson theorem, which holds for straight
line segments, is true for r.

D. J. Newman has dealt with the problem of characterizing arcs which
have property J. In [5] he conjectures that r has property J if and only if r
is Cl. In this paper we show that this condition is not sufficient. We also
obtain an analogous result for closed Cl Jordan curves.

Let ,p be the conformal mapping of I wi> I onto the complement of
r, such that for a > 0,

The possession of property J is related to the smoothness of ,pew) for
I w I = 1. Andersson [2] has shown that if r has property J, then
,p(ei8) E Lip(1 - e) for all e > O. He uses this to show that the right-angled
arc [0, 1] U [0, i] does not have property J, since the mapping ,p is not Lip(ex)
for ex > i. By refining Andersson's proof we shall prove the following:

THEOREM 1. Suppose r has property J. Then ,p(eie) has modulus of
continuity wet) = OCt log3(1/t).

This will prove our assertion that r E Cl is not sufficient for property J,
since for any n we can construct a curve for which w(,p, t) = k(t logn(1/t))
for some positive constant k. Given n, there exists an > 0 such that the
image of [-an, an] under the mapping g(;:;) = ;:; 10gn(1lz) is a Cl Jordan are,
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which we call r. Here we take the branch cut for log z to be along the negative
imaginary axis. Furthermore, if we let Q be the upper half-disk of radius
slightly larger than an , suitably smoothe<;l at the corners, then g is a conformal
mapping of Q onto the interior D of a closed C1 Jordan curve r 1 , of which r
is a subarc. The conformality follows from a lemma of Warschawski
[6, p. 312], since Q may be chosen so that Re g' > 0 in the convex domain Q.
Now let h map the unit disk I , I < I conformally onto Q, so that 0/ = go h
is a conformal mapping of I , I < I onto D, and 0/ is continuous for I 'I ~ 1.
Since 8Q may be assumed to be at least C2, h is Lipschitz continuous for
I 'I ~ 1 so 0/ has modulus of continuity = K'(t 10gn(l/t)), for K' a constant.

Now let lj; be the conformal mapping of I wi> I onto the complement of
r and let D' = if;-I(D). Let H map 1'1 < I conformally onto D'. Then
0/1 = if; 0 H maps I , I < I conformally onto D. But then 0/1 = 0/ 0 T where
T is a linear fractional transformation of I , I < 1 onto itself. Finally we note
that lj;(e'8) = go hoT 0 H-l(ei8) then has modulus of continuity equal to
K(t 10gn(1/t)) in a neighborhood of if;-I(O). Thus, lj;(ei8) has this modulus of
continuity.

In order to prove Theorem I we need refinements of two well-known
theorems of Hardy and Littlewood. In the following proofs, k 1 , k 2 , ... will
denote positive constants.

LEMMA I [3, p. 125]. Suppose fez) = u(z) + iv(z) is holomorphic in
I z I < 1 and that u(z) is continuous in I z I ~ 1. Suppose that u(eit) has
modulus of continuity wet). Thenfor 1 > r ;?o t and all B,

I1'(rei8)I ~ 5 r (w(t)/t 2
) dt.

l-r

LEMMA 2 [3, p. 128]. Suppose fez) is holomorphic in 1z I < 1 and 1'(z)
satisfies the condition

I1'(re'8)I ~ M r (w(t)/t 2
) dt

l-r

for 1 > r ;?o t and all B. Here M is constant, wet) is nondecreasing, non­
negative, and bounded for 0 ~ t ~ 1T, t = O(w(t)) and f~ (w(t)/t) dt < 00.

Then f (z) extends continuously to I z I ~ 1 andf (ei8) has modulus ofcontinuity

w*(8) = 0 [( w;t) dt + 8rwX) dt].

Proof of Theorem 1. We let fez) = z, so that there exist k 1 and {Pn} for
which Ifez) - Pn(z) I ~ kIln for all n and all z E r.
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Now for I u I < 1 we define

j(u) = ~ r /0 ifi(w) dw
2m J1w1 _1 W - U

and for 0 < x < 1

/iu) = j(xu) = _1. r /0 ifi(w) dw.
2m J1w1=1 w - xu

Next consider

P () = _1 i Pn 0 ifi(w) d '
n", U 2' 11-

• TTl Iwl~l W - xu

For fixed x, Pn .", is a polynomial of degree less than n. Thus

EnU:r) < max-l- r I/o ifi(w) - Pn 0 ifi(w)I I dw I
lul=1 2TT J1w1=1 I w - xu I

1 i 1< EnC!) max -2 I I I dw I
lul~1 TT Iwl~l W - xu

k 2 1< -log -1--' (I)n -x

Thus, by the inverse theorem for approximation on the unit circle

w(log-l{l/{l - x))j.,(ei8), B) = O(B Iog{l/B)).

By Lemma 1, we then have

Ij",'(rei8) I < kslog{l/(l - x)) log2(1/{l - r)).

Letting x = r,

Ij'(r2ei8) I :::;:; ks log3{l/{l - r))

< ks log3({l + r)/(l - r2))

< k4 10gS{l/(I - r2
)).

Replacing r2 by r we conclude that

Ij'(rei8) I < k4 log3(1/(1 - r)).

Thus, j satisfies the hypotheses of Lemma 2 with wet) = t Iog2 t, so that j
extends continuously to the closed disk and j(ei8) has modulus of continuity

w(], 8) = 0 r( log2 t dt + Br (I/t) log2 t dt]
o 8

= O(B logs{l/B)).
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But

j(u) = ~ [ ~(w) dw = _1. [ ~(I/w) dw = ~ (;) _ ~ .
2m J1W!=1 W - u 2m J1w1=1 W - U U U
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(2)

Thus the theorem is proved.
By a simple modification of the proof at step (1), one may easily prove the

following

COROLLARY. Suppose that for f continuous on rand k a positive integer

En(f) = O(logknw(j, lin)),

then if;(ei8) has modulus of continuity w(t) = O(t 10gk+3(1lt)).

Thus we see that the class of Cl arcs is, in a sense, a long way from
possessing property J, in that for each k there is a Cl arc for which (2) cannot
hold.

Suppose now that r is a closed Jordan curve. We shall say that r has
property JA if, for any function f which is analytic in D = Interior rand
continuous on 15, there exists a sequence of polynomials {Pn}, Pn of degree
< n, such that

Eif) = sup I j(z) - Pn(z)I = O(w(j, lin))
ZEt:J

as 11 ---+ 00.

Here w(j, t) is the modulus of continuity off on r. It follows from a result
of Al'per [1] that any Cl+8 curve has property JA • We have, however the
following

THEOREM 2. The class ofclosed Cl Jordan curves does not have property JA •

Proof Let r o be a Cl Jordan arc for which the exterior mapping function
if; has modulus of continuity = k5(t log5(llt)), as constructed above. After a
linear transformation, we may assume that - 2 and +2 are endpoints of r o ,
which lies in the z plane. We then write z = w + I/w and let r be the image
of r o in w plane. Then r is a closed Cl Jordan curve. As in [5], we note that
for f continuous on r o , approximation to j(w + (1lw)) on r by polynomials
in wand I/w yields ordinary polynomial approximation to j(z) on r o •
Under the assumption that r has property JA , we shall see that j(z) = z
may be approximated sufficiently well on r o to apply the corollary. Thus we
consider g(w) = j(w + (I/w)) = w+ (I/w), which is Lipschitz continuous
onr.

Now we define

for WE Int r,
for WE Ext r.
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According to the Plemelj-Privalov formulas, gl and g2 are continuous on
Int rand Ext r, respectively, and for W E r

1 1 jP'v. g(t)
gl(W) = -2 g(w) + 2---; --dt,

TTl r t - W

1 1 I P
'
v . g(t)

g2(W) = - -g(w) +-. --dt.
2 2m r t - w

Furthermore, on T, gl and g2 both have modulus of continuity =
O(t 10g(Ilt». (See [4, p. 46]. This result is not stated in the theorem in [4],
but it is in fact what is proved there.)

By hypothesis, gl may be approximated by polynomials on Int r and, as
a consequence of the hypothesis, g2 is approximable on Ext r by polynomials
in Ilw, with

k = 1,2.

But on T, g(w) = gl(W) - g2(W), so g is approximable by polynomials in w
and Ilw and is therefore approximable by polynomials in w + (l/w). There­
fore we have on To

En(f) = O«Ifn) log n).

It then follows from the argument of Theorem 1, as used in proving the
Corollary, that

w(1jJ(ei8» = O(t log4(llt».

This being false, the theorem is proved.
Finally, we note that the class of closed Cl Jordan curves is far from

possessing property JA in that for each k there is such a curve for which (2)
cannot hold.
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