Best Approximation on Smooth Arcs

F. D. Lesley

Department of Mathematics, San Diego State University, San Diego, California 92182
Communicated by I. J. Schoenberg
Received July 15, 1975

Suppose that Γ is a Jordan arc in the complex plane and that f is continuous on Γ with modulus of continuity $\omega(f, t) . \Gamma$ is said to have property J if for any such function there is a sequence of polynomials $\left\{P_{n}\right\}, P_{n}$ of degree $<n$, such that

$$
E_{n}(f)=\sup _{z \in Y}\left|f(z)-P_{n}(z)\right|=\bigcirc(\omega(f, 1 / n)) \quad \text { as } \quad n \rightarrow \infty
$$

That is, Γ has property J if the Jackson theorem, which holds for straight line segments, is true for Γ.
D. J. Newman has dealt with the problem of characterizing arcs which have property J. In [5] he conjectures that Γ has property J if and only if Γ is C^{1}. In this paper we show that this condition is not sufficient. We also obtain an analogous result for closed C^{1} Jordan curves.
Let ψ be the conformal mapping of $|\boldsymbol{w}|>1$ onto the complement of Γ, such that for $a>0$,

$$
\psi(w)=a w+c_{0}+\left(c_{1} / w\right)+\left(c_{2} / w^{2}\right)+\cdots .
$$

The possession of property J is related to the smoothness of $\psi(w)$ for $|w|=1$. Andersson [2] has shown that if Γ has property J, then $\psi\left(e^{i \theta}\right) \in \operatorname{Lip}(1-\epsilon)$ for all $\epsilon>0$. He uses this to show that the right-angled arc $[0,1] \cup[0, i]$ does not have property J, since the mapping ψ is not $\operatorname{Lip}(\alpha)$ for $\alpha>\frac{1}{2}$. By refining Andersson's proof we shall prove the following:

Theorem 1. Suppose Γ has property J. Then $\psi\left(e^{i \theta}\right)$ has modulus of continuity $\omega(t)=\bigcirc\left(t \log ^{3}(1 / t)\right)$.

This will prove our assertion that $\Gamma \in C^{1}$ is not sufficient for property J, since for any n we can construct a curve for which $\omega(\psi, t)=k\left(t \log ^{n}(1 / t)\right)$ for some positive constant k. Given n, there exists $a_{n}>0$ such that the image of $\left[-a_{n}, a_{n}\right]$ under the mapping $g(z)=z \log ^{n}(1 / z)$ is a C^{1} Jordan arc,
which we call Γ. Here we take the branch cut for $\log z$ to be along the negative imaginary axis. Furthermore, if we let Ω be the upper half-disk of radius slightly larger than a_{n}, suitably smoothed at the corners, then g is a conformal mapping of Ω onto the interior D of a closed C^{1} Jordan curve Γ_{1}, of which Γ is a subarc. The conformality follows from a lemma of Warschawski [6, p. 312], since Ω may be chosen so that $\operatorname{Re} g^{\prime}>0$ in the convex domain Ω. Now let h map the unit disk $|\zeta|<1$ conformally onto Ω, so that $\phi=g \circ h$ is a conformal mapping of $|\zeta|<1$ onto D, and ϕ is continuous for $|\zeta| \leqslant 1$. Since $\partial \Omega$ may be assumed to be at least C^{2}, h is Lipschitz continuous for $|\zeta| \leqslant 1$ so ϕ has modulus of continuity $=K^{\prime}\left(t \log ^{n}(1 / t)\right)$, for K^{\prime} a constant.

Now let ψ be the conformal mapping of $|w|>1$ onto the complement of Γ and let $D^{\prime}=\psi^{-1}(D)$. Let H map $|\zeta|<1$ conformally onto D^{\prime}. Then $\phi_{1}=\psi \circ H$ maps $|\zeta|<1$ conformally onto D. But then $\phi_{1}=\phi \circ T$ where T is a linear fractional transformation of $|\zeta|<1$ onto itself. Finally we note that $\psi\left(e^{\imath \theta}\right)=g \circ h \circ T \circ H^{-1}\left(e^{i \theta}\right)$ then has modulus of continuity equal to $K\left(t \log ^{n}(1 / t)\right)$ in a neighborhood of $\psi^{-1}(0)$. Thus, $\psi\left(e^{i \theta}\right)$ has this modulus of continuity.

In order to prove Theorem 1 we need refinements of two well-known theorems of Hardy and Littlewood. In the following proofs, k_{1}, k_{2}, \ldots will denote positive constants.

Lemma 1 [3, p. 125]. Suppose $f(z)=u(z)+i v(z)$ is holomorphic in $|z|<1$ and that $u(z)$ is continuous in $|z| \leqslant 1$. Suppose that $u\left(e^{i t}\right)$ has modulus of continuity $\omega(t)$. Then for $1>r \geqslant \frac{1}{2}$ and all θ,

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leqslant 5 \int_{1-r}^{\pi}\left(\omega(t) / t^{2}\right) d t
$$

Lemma 2 [3, p. 128]. Suppose $f(z)$ is holomorphic in $|z|<1$ and $f^{\prime}(z)$ satisfies the condition

$$
\left|f^{\prime}\left(r e^{\imath \theta}\right)\right| \leqslant M \int_{1-r}^{\pi}\left(\omega(t) / t^{2}\right) d t
$$

for $1>r \geqslant \frac{1}{2}$ and all θ. Here M is constant, $\omega(t)$ is nondecreasing, nonnegative, and bounded for $0 \leqslant t \leqslant \pi, t=\bigcirc(\omega(t))$ and $\int_{0}^{\pi}(\omega(t) / t) d t<\infty$. Then $f(z)$ extends continuously to $|z| \leqslant 1$ and $f\left(e^{i \theta}\right)$ has modulus of continuity

$$
\omega^{*}(\theta)=\bigcirc\left[\int_{0}^{\theta} \frac{\omega(t)}{t} d t+\theta \int_{\theta}^{\pi} \frac{\omega(t)}{t^{2}} d t\right]
$$

Proof of Theorem 1. We let $f(z)=\bar{z}$, so that there exist k_{1} and $\left\{P_{n}\right\}$ for which $\left|f(z)-P_{n}(z)\right| \leqslant k_{1} / n$ for all n and all $z \in \Gamma$.

Now for $|u|<1$ we define

$$
\tilde{f}(u)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f \circ \psi(w)}{w^{w}-u} d w
$$

and for $0<x<1$

$$
\ddot{f}_{x}(u)=\tilde{f}(x u)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f \circ \psi(w)}{w-x u} d w .
$$

Next consider

$$
P_{n, x}(u)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{P_{n} \circ \psi(w)}{w-x u} d w
$$

For fixed $x, P_{n, x}$ is a polynomial of degree less than n. Thus

$$
\begin{align*}
E_{n}\left(\tilde{f}_{v}\right) & \leqslant \max _{|u|=1} \frac{1}{2 \pi} \int_{|w|=1} \frac{\left|f \circ \psi(w)-P_{n} \circ \psi(w)\right|}{|w-x u|}|d w| \\
& \leqslant E_{n}(f) \max _{|u|=1} \frac{1}{2 \pi} \int_{|w|=1} \frac{1}{|w-x u|}|d w| \\
& \leqslant \frac{k_{2}}{n} \log \frac{1}{1-x} . \tag{1}
\end{align*}
$$

Thus, by the inverse theorem for approximation on the unit circle

$$
\omega\left(\log ^{-1}(1 /(1-x)) \tilde{f}_{x}\left(e^{i \theta}\right), \theta\right)=O(\theta \log (1 / \theta)) .
$$

By Lemma 1, we then have

$$
\left|\tilde{f}_{x}^{\prime}\left(r e^{i \theta}\right)\right| \leqslant k_{3} \log (1 /(1-x)) \log ^{2}(1 /(1-r)) .
$$

Letting $x=r$,

$$
\begin{aligned}
\left|\tilde{f}^{\prime}\left(r^{2} e^{i \theta}\right)\right| & \leqslant k_{3} \log ^{3}(1 /(1-r)) \\
& \leqslant k_{3} \log ^{3}\left((1+r) /\left(1-r^{2}\right)\right) \\
& \leqslant k_{4} \log ^{3}\left(1 /\left(1-r^{2}\right)\right)
\end{aligned}
$$

Replacing r^{2} by r we conclude that

$$
\left|\tilde{f}^{\prime}\left(r e^{i \theta}\right)\right| \leqslant k_{4} \log ^{3}(1 /(1-r)) .
$$

Thus, \tilde{f} satisfies the hypotheses of Lemma 2 with $\omega(t)=t \log ^{2} t$, so that \tilde{f} extends continuously to the closed disk and $\tilde{f}\left(e^{i \theta}\right)$ has modulus of continuity

$$
\begin{aligned}
\omega(\tilde{f}, \theta) & =O\left[\int_{0}^{\theta} \log ^{2} t d t+\theta \int_{\theta}^{\pi}(1 / t) \log ^{2} t d t\right] \\
& =O\left(\theta \log ^{3}(1 / \theta)\right)
\end{aligned}
$$

But

$$
f(u)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{\bar{\psi}(w)}{w-u} d w=\frac{1}{2 \pi i} \int_{|w|=1} \frac{\bar{\psi}(1 / w)}{w-u} d w=\Psi\left(\frac{1}{\bar{u}}\right)-\frac{a}{u} .
$$

Thus the theorem is proved.
By a simple modification of the proof at step (1), one may easily prove the following

Corollary. Suppose that for f continuous on Γ and k a positive integer

$$
\begin{equation*}
E_{n}(f)=O\left(\log ^{k} n \omega(f, 1 / n)\right), \tag{2}
\end{equation*}
$$

then $\psi\left(e^{i \theta}\right)$ has modulus of continuity $\omega(t)=\bigcirc\left(t \log ^{k+3}(1 / t)\right)$.
Thus we see that the class of C^{1} arcs is, in a sense, a long way from possessing property J, in that for each k there is a C^{1} arc for which (2) cannot hold.

Suppose now that Γ is a closed Jordan curve. We shall say that Γ has property J_{A} if, for any function f which is analytic in $D=$ Interior Γ and continuous on \bar{D}, there exists a sequence of polynomials $\left\{P_{n}\right\}, P_{n}$ of degree $<n$, such that

$$
E_{n}(f)=\sup _{z \in \bar{D}}\left|f(z)-P_{n}(z)\right|=O(\omega(f, 1 / n)) \quad \text { as } \quad n \rightarrow \infty
$$

Here $\omega(f, t)$ is the modulus of continuity of f on Γ. It follows from a result of Al'per [1] that any $C^{1+\delta}$ curve has property J_{A}. We have, however the following

Theorem 2. The class of closed C^{1} Jordan curves does not have property J_{A}.
Proof. Let Γ_{0} be a C^{1} Jordan arc for which the exterior mapping function ψ has modulus of continuity $=k_{5}\left(t \log ^{5}(1 / t)\right)$, as constructed above. After a linear transformation, we may assume that -2 and +2 are endpoints of Γ_{0}, which lies in the z plane. We then write $z=w+1 / w$ and let Γ be the image of Γ_{0} in w plane. Then Γ is a closed C^{1} Jordan curve. As in [5], we note that for f continuous on Γ_{0}, approximation to $f(w+(1 / w))$ on Γ by polynomials in w and $1 / w$ yields ordinary polynomial approximation to $f(z)$ on Γ_{0}. Under the assumption that Γ has property J_{A}, we shall see that $f(z)=\bar{z}$ may be approximated sufficiently well on Γ_{0} to apply the corollary. Thus we consider $g(w)=f(w+(1 / w))=\bar{w}+(1 / \bar{w})$, which is Lipschitz continuous on Γ.

Now we define

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} \frac{g(t)}{t-w} d t & =g_{1}(w) & \text { for } \quad w \in \operatorname{Int} \Gamma \\
& =g_{2}(w) & \text { for } \quad w \in \operatorname{Ext} \Gamma
\end{aligned}
$$

According to the Plemelj-Privalov formulas, g_{1} and g_{2} are continuous on $\overline{\text { Int } \bar{\Gamma}}$ and $\overline{\operatorname{Ext} \Gamma}$, respectively, and for $w \in \Gamma$

$$
\begin{aligned}
& g_{1}(w)=\frac{1}{2} g(w)+\frac{1}{2 \pi i} \int_{\Gamma}^{\text {P.v. }} \frac{g(t)}{t-w} d t, \\
& g_{2}(w)=-\frac{1}{2} g(w)+\frac{1}{2 \pi i} \int_{\Gamma}^{\text {P.v. }} \frac{g(t)}{t-w} d t .
\end{aligned}
$$

Furthermore, on Γ, g_{1} and g_{2} both have modulus of continuity $=$ $\bigcirc(t \log (1 / t))$. (See [4, p. 46]. This result is not stated in the theorem in [4], but it is in fact what is proved there.)

By hypothesis, g_{1} may be approximated by polynomials on $\overline{\operatorname{Int} \Gamma}$ and, as a consequence of the hypothesis, g_{2} is approximable on $\overline{\operatorname{Ext} \Gamma}$ by polynomials in $1 / w$, with

$$
E_{n}\left(g_{k}\right)=O((1 / n) \log n), \quad k=1,2 .
$$

But on $\Gamma, g(w)=g_{1}(w)-g_{2}(w)$, so g is approximable by polynomials in w and $1 / w$ and is therefore approximable by polynomials in $w+(1 / w)$. Therefore we have on Γ_{0}

$$
E_{n}(f)=\bigcirc((1 / n) \log n)
$$

It then follows from the argument of Theorem 1, as used in proving the Corollary, that

$$
\omega\left(\psi\left(e^{i \theta}\right)\right)=\bigcirc\left(t \log ^{4}(1 / t)\right)
$$

This being false, the theorem is proved.
Finally, we note that the class of closed $C^{\mathbf{1}}$ Jordan curves is far from possessing property J_{A} in that for each k there is such a curve for which (2) cannot hold.

References

1. S. Ya. Al'per, On uniform approximations of functions of a complex variable on closed sets, Izv. Akad. Nauk SSSR Ser. Mat. 19 (1955), 423-444 (Russian).
2. J. E. Andersson, On the degree of polynomial and rational approximation of holomorphic functions, Ph. D. Dissertation, University of Göteborg, 1975.
3. F. D. Lesley, Differentiability of minimal surfaces at the boundary, Pacific J. Math. 37 (1971), 123-139.
4. N. I. Muskhelishvili, 'Singular Integral Equations," Noordhoff, Groningen, Holland, 1953.
5. D. J. Newman, Jackson's theorem on complex arcs, J. Approximation Theory 10 (1974), 206-217.
6. S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340.
